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Abstract

We describe a method for recovering the three dimen-
sional shape of a surface, using multiple images from a
single camera, closely related to ”light field reconstruc-
tion” described by Magda et al. [1]. A volume array of
switchable illuminators is used to obtain a set of images
that are used for the reconstruction. Unlike photometric
stereo, where the illumination is assumed to be homoge-
neous, we exploit the inverse-square-law falloff of intensity
with the distance between the illuminator and the surface.
By placing illuminators at a variety of distances from the
measurement volume, a direct estimate of surface range can
be obtained, in addition to surface normal estimates ob-
tained as in photometric stereo. We discuss solution meth-
ods and present simulation results for a few simple geome-
tries. Aspects of illuminator design and calibration are also
considered.

1. Introduction

This paper is concerned with the recovery of three-
dimensional surface shape using images from a conven-
tional camera. We introduce the term photometric ranging
to describe the direct computation of depth or range from
a set of photometric measurements. Our application is the
measurement of the shape of the human face, but the meth-
ods we discuss are completely general. Here we present
a method of photometric ranging based on a spatial array
of compact diffuse illuminators. Our method, while devel-
oped independently, is equivalent in many respects to the
light field reconstruction method described by Magda et al.
[1].

Photometric ranging is a generalization of the well-
established technique of photometric stereo[2, 3]. In pho-
tometric stereo, multiple images of a surface are obtained
under different illumination conditions. The intensities ob-
tained for different illumination conditions are used to com-
pute an estimate of the local gradient vector (surface orien-
tation). The gradient vectors are then integrated to recover
the surface. It is normally assumed (for shape-from-shading
as well as photometric stereo) that the illumination is uni-
form within the measurement volume, and that variations

in image intensity depend only on local surface albedo and
orientation.

Photometric stereo can be contrasted with a class of ap-
proaches known as structured light [4, 5, 6]. In the struc-
tured light approach, a high-contrast pattern of spots or
lines is projected onto the object to be measured. A cam-
era views the object from a different direction, from which
the projected pattern is distorted according to the surface
shape. The intensities of the various illuminated pixels are
discarded; only the locations of the illuminated points are
used. Thus we see that photometric stereo and structured
light are in some sense dual to one another: photomet-
ric stereo assumes homogeneous illumination and exploits
the dependence of image intensity upon surface orientation,
while structured light relies upon inhomogeneous illumina-
tion and ignores small variations in image intensity.

Our proposed technique falls somewhere in between
these approaches. We create a complex three-dimensional
light field (as in the structured light approach), and measure
small differences in the gray level values produced by vari-
ous illuminators (as in photometric stereo). We exploit the
inverse-square-law dependence of illumination upon dis-
tance from a point source illuminator to obtain a direct es-
timate of surface range. The intuition behind the idea is
as follows: imagine a small surface patch illuminated by
a point source at distance � produces an image pixel with
value ��� ; now, imagine moving the illuminator away from
the surface along the line joining the patch with the original
position of the illuminator by a distance

�
. For the patch in

question, the angle of incidence of the illumination is un-
changed, but the surface irradiance is decreased by a factor

of ���	��
� ��

. Therefore the image intensity measured under

the new conditions will be: � 
�� ��������	��
 � 
 . Because the
illuminator offset

�
is known, we can solve for the original

distance � in terms of the two intensities:

� � � ���� ��� (1)

where
� ��� ������ .

In practice, this idealized case will not be realized. The
illuminator displacement will only coincide with the illumi-
nation direction for one point on the surface; in general, mo-
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tion of the illuminator will produce a change in illumination
direction (as in photometric stereo) and a distance-related
change in irradiance. Furthermore, rather than moving an
illuminator, we wish to construct a stationary rig consist-
ing of many fixed illuminators. In this case, it is impossible
to have a pair of illuminators with the same incident direc-
tion, because the nearer illuminator would block the more
distant. Thus, we must consider the combined effects of
changes of both illuminator range and direction, although
we will attempt to construct a geometry for which range ef-
fects dominate, so that equation 1 above is approximately
correct.

Magda et al. [1] approached this problem by computing
the effects of virtual illuminators, obtained by interpolating
values obtained from a densely sampled grid of illuminator
positions. In their setup, spatial sampling of illumination
directions was accomplished by attaching an illuminator to
the end of a robot arm, so the problem of shadows cast by
near illuminators was not an issue. In their method, a differ-
ent virtual illuminators must be computed for each possible
range along a pixel’s line-of-sight; here we observe that, in
the special case where the virtual illuminators can be made
collinear with the camera nodal point, the illuminator axis
will coincide with the line-of-sight, and equation (1) can be
applied to obtain a direct estimate. The optimization per-
formed by Magda et al. uses all the illuminators, and so
is likely to be more immune to noise effects, but the direct
estimate may provide a useful starting point for the opti-
mization.

Many previous approaches to shape-from-shading and
photometric stereo assume that the radiance of a surface
patch is independent of the viewing direction. Surfaces for
which this is true are known as Lambertian, and while there
may be no perfectly Lambertian surfaces in nature, it is
nevertheless a good approximation for most matte surfaces.
The Lambertian assumption is violated for glossy surfaces
which produce specular (mirror) reflections. Furthermore,
materials with complex sub-surface scattering properties
can depart from Lambertian behavior even in the diffuse
component of their reflection. Most surfaces are isotropic,
in the sense that there is no special orientation within the
plane of the surface itself. Materials such as brushed metal
are anisotropic; the reflection from such a surface cannot
be determined without knowing the orientation of the sur-
face microstructure relative to the illumination and viewing
directions. All of these effects are captured by the bidirec-
tional reflectance distribution function (BRDF). Because of
the importance of the BRDF for both vision and graphics,
there have been a number of recent studies concerning its
measurement [7, 8] and description [9, 10]; a number of
methods have also been proposed to recover surface shape
for objects with unknown non-Lambertian reflectance prop-
erties [1, 11, 12]. While a non-Lambertion BRDF does

complicate the problem of photometric ranging, in princi-
ple we can recover not only the object shape but also infor-
mation about the BRDF. This will be easier when we can
assume that the BRDF is uniform over part or all of the sur-
face.

The method of photometric sampling [13] estimates sur-
face shape and the BRDF by combining many images ob-
tained with an array of distant illuminators. Because the
illuminator distance is assumed to be large with respect to
the dimensions of the imaging volume, the irradiance and
illumination direction for each illuminator is assumed to be
uniform. The present approach may be seen as a general-
ization of their work to the near field of the illuminators.

2. Theoretical Framework
We consider the case of a surface � lit sequentially by�
lamps. Each pixel of the camera corresponds to a small

patch of surface; let ��� represent the three dimensional co-
ordinates of the point at the center of the patch imaged by
the � th pixel, with the total number of pixels represented
by � . (Note that we use boldface symbols such as ��� to
represent vector quantities.) Similarly, let �
	 represent the
coordinates of the � th lamp (

�
� � � �
). Finally, let ����	

represent the value of the � th pixel when the surface is il-
luminated by the � th lamp. The set of

�
images can be

thought of as and � x
�

matrix � with elements � ��	 . Each
row of � , � � , is the set of values measured at the � th pixel,
while each column is the image captured with the � th lamp.

Here we derive an expression for ����	 in terms of the co-
ordinates of the surface and the lamps. We define � ��	 to be
the distance between the the lamp at � 	 and the surface at
� � , and � ��	 to be the unit direction vector from the lamp to
the surface. As long as the dimensions of the lamp are small
compared to � ��	 , the irradiance falling on the patch with be
proportional to �� ���� . In general, the irradiance will also be a

function of the direction � ��	 . We may seek to eliminate this
dependence, by placing a wide-angle diffuser in front of the
lamp, or we may seek to exploit it by using an anisotropic
diffuser. We introduce the function � ��� � to represent the
radiant flux per unit solid angle in the direction � . Thus the
irradiance falling on the � th patch from the � th lamp will be����� ������ ���� .

To predict the image intensity resulting from this situa-
tion, we need to specify a reflectance model. We define �
to be the location of the camera nodal point, and introduce
the symbols  � �"! � � �$# ! to represent the range (distance
from the camera) of the � th patch, and % � to represent the
unit direction vector from the from the � th patch to the cam-
era nodal point. In general, the image intensity will depend
upon � ��	 , % � , and the surface normal vector & � . This depen-
dence is captured by the BRDF. In this analysis we assume
that the surface is isotropic, i.e. that it has no special axis,
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Figure 1: Diagram showing a typical surface patch and the
associated direction vectors; &�� is the normal vector, ����	 is
a unit direction vector pointing back to the � th lamp, and % �
is a direction vector pointing to the camera. The angle of
incidence of the illumination

�
is the angle between vectors

& � and � ��	 , and the output scattering angle � is the angle
between & � and % � . The angle � is the angle in the plane of
the surface made by the projections of � ��	 and % � .

so that the image intensity resulting from a small patch is
unchanged if the surface rotates in its plane. In this case,
the BRDF can be expressed as a function of 3 angles: the
angle of incidence

�
formed by direction vectors � ��	 and &$� ,

the slant � of the surface relative to the camera defined as
the angle between % � and & � , and the angle � in the plane of
the surface between the projections of � ��	 and % � (see figure
1). Thus,

� ��	 � � � � ��	 �� 
��	 � � � � � � � ��� (2)

Equation 2 describes the forward problem of image syn-
thesis (and ignores the complications of self-shadowing and
interreflections). But we are primarily interested in the in-
verse problem: how can we obtain the coordinates ��� of
the surface, given the image measurements � ��	 ? Our goal is
to compute the range  � and surface orientation &�� of each
point on the surface, using only the local measurements � � .
Let � � represent our estimate of the range of the � th patch;
we wish to derive a function � � � which computes � � from
the local measured intensities � � :

� � � � ��� � �	� (3)

Unfortunately, deriving the form of � � � analytically by in-
verting equation (2) has so far proven to be beyond our

mathematical abilities. Magda et al. [1] obtain � � using non-
linear optimization; their method uses near and far arrays of
illuminator positions; for each near illuminator, a virtual far
illuminator is computed as a linear combination of the mea-
sured far illuminators, providing a pair of collinear illumi-
nators for each value of � � considered during the optimiza-
tion. Here we present a alternative non-iterative approach,
which, while less exact, is considerably faster. We expect
that a hybrid approach in which direct estimation is used to
initialize an optimization or regularization may eventually
prove to be effective.

Our approximate solution is obtained as follows: we tab-
ulate a ”training set” of simulated measurements for all pos-
sible states of patch � (where a ”state” is comprised of a
range, orientation, and reflectance). We then use multiple
regression to solve for an approximation providing a least-
squares estimate of the true values of the parameters. The
simplest approximation is simple linear regression; for N
illuminators, we solve for N+1 predictor coefficients. (Be-
cause each pixel corresponds to a different direction and set
of positions in space, there will be a different set of coeffi-
cients for each pixel.) Obviously, the true relation between
pixel values and range is not linear; one way to improve the
approximation is to add higher-order terms of increasing de-
gree. When N is large, however, the number of coefficients
increases precipitously with polynomial order. An alterna-
tive approach to capturing the nonlinearity while keeping
the number of coefficients to be estimated low is to com-
pute simple nonlinear functions of the measurements (ratio,
square root, etc.) and use these transformed variables in a
linear regression. We might also see a benefit by transform-
ing the output variables, such as solving for the 
 coordinate
instead of the range (distance).

3. Simulation of Lambertian case
In this section, we test the method with simulated data

for a simplified geometry. We consider the case in which
the illuminators are perfectly diffused so that the irradiance
does not depend on direction:

� ���$��	 � � � �
(4)

Also, we assume that the surface is Lambertian, and can
be described by an albedo � �

� � � � � � � � � � �
����� � � ��� (5)

Under these assumptions,

� ��	 � � � ������� � 	 �� 
��	 �
(6)

Here we demonstrate direct recovery using a simple two-
dimensional simulation. Figures 2 and 3 show the geometry
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Figure 2: Range recovery of planar surfaces; a simulated
camera looks from left-to-right at a planar surface illumi-
nated by four different lamps. Heavy lines show the re-
constructed range. The range of depths of the test surfaces
corresponds to the range used in the training set.

of our simulation. We simulate an illumination rig consist-
ing of 4 perfectly diffused sources located at the corners of
a rectangle, 9 inches to the left or right of the camera axis,
with one pair located in the plane normal to the camera axis
which contains the optical nodal point, and a second pair
located 9 inches back.

Choosing the range of parameters over which to train
is critical for approximation methods such as the one de-
scribed here; the smaller the range, the fewer nonlinear
terms will be required, and a better fit will be required. But
generalization performance outside the training range will
be degraded. We anticipate that a good balance between
speed and accuracy may be obtained by having different sets
of coefficients for different regions of the parameter space.
Here we chose values roughly corresponding to our face-
imaging setup. For range (distance from the camera nodal
point), 15 values were used, from 27 to 38 inches. 15 an-
gles for The angle of the normal vector (assumed to lie in
the plane containing the illuminators) was uniformly sam-
pled, in 15 steps ranging from -23 to 23 degrees. Finally,
15 values of albedo were sampled, ranging from 0.1 to 1 in
linear steps. Thus, the total number of surface patches used
for training was 15x15x15 = 3375.

The training data for a single pixel consists of one simu-
lated measurement for each illuminator and each set of sur-
face parameters. The entire set of measurements (over all
pixels) was scaled to have a maximum of 255. The values
were then rounded to integers, simulating quantization by a
frame-grabber. Training consists of solving for a set of co-
efficients to be applied to the measurements (and nonlinear
functions of the measurements) which come closest to re-
producing the original parameter values. This is done inde-
pendently for each parameter, and each camera pixel. Var-
ious nonlinear transformations of the measurements were

Figure 3: Same as figure 2, but for oblique surfaces.

investigated; here we display results obtained using the 4
measurements and all 12 quotients. Including a constant
term, a total of 17 parameters were estimated for each pixel.
Figures 2 and 3 show typical reconstruction results for pla-
nar surfaces.

4. Challenges
The results shown in the previous section demonstrate

that photometric ranging is a viable technique for direct
range estimation, even using our approximate solution
method. In this section we discuss a number of challeng-
ing problems that are present in the real world, and suggest
approaches that we believe will yield effective solutions.

4.1. Nonlambertian Surfaces
Many surfaces of interest have a non-Lambertian BRDF.

For example, human skin can have a strong specular com-
ponent resulting from a film of oil on its surface. In the
previous section, our calibration training set was obtained
by simulating a Lambertian sample. Obviously the error
will in general increase if these coefficients are use to mea-
sure a sample with a significantly different BRDF. Provided
we have a sufficient number of measurements, we might be
able to estimate both the object shape and the BRDF at each
pixel. Such an approach depends critically on finding a low-
dimensional representation of the space of possible BRDFs;
Here we ask two questions: first, can we accurately deter-
mine the surface shape in the presence of a non-Lambertion
BRDF? Second, can we estimate the form of the BRDF?
For a human face, we are likely to have many pixels cor-
responding to surface patches with identical BRDFs, but in
general we must be prepared to deal with spatial inhomo-
geneity.

The beauty of the method of Magda et al. is that by
estimating the depth of each point using illuminators (real
or virtual) which are collinear with the point in question,
dependence of the measured intensity on the BRDF is elim-
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inated. Their method relies on the ability to simulate virtual
illuminators by linearly interpolating between the measure-
ments obtained from nearby real illuminators. The validity
of this approximation is dependent upon the real illumina-
tors being spaced closely enough that the surface reflectance
varies linearly between the two directions sampled by the il-
luminators.

How many parameters must be estimated to arrive at a
sufficiently accurate description of a real BRDF? BRDFs
and light fields are often represented as functions defined on
the hemisphere. This representation allows elegant and effi-
cient computation of reflectance: the output is the spherical
convolution of the BRDF with the incident light field [14].
BRDFs are conveniently represented in terms of spherical
harmonics[15], which are orthogonal basis functions de-
fined on the sphere. Spherical harmonics are parametrized
by a frequency, and can be used to compute a frequency
spectrum. Just as in normal (flat) Fourier analysis, consid-
erations of Nyquist sampling and aliasing apply. If we can
assume that the BRDF is smooth, then we may be able to
capture its form with a small number of low-frequency co-
efficients. Alternatively, a parametric description as a linear
combination of diffuse and specular components [13] may
reduce the number of parameters still further. Nevertheless,
the concept of frequency bandwidth and critical sampling is
of fundamental importance in determining good illuminator
positions. In general, we will want to space the illuminators
closely enough that we do not miss the specular lobe.

It is worth noting that, provided we are able to boot-
strap a stable shape estimate, the BRDF can be measured
at super-Nyquist frequencies using the techniques of super-
resolution [16, 17], by collecting a sequence of images for
different poses of the object. Super-Nyquist frequencies in
the BRDF introduce aliasing into each measurement, but,
by registering the objects between frames, high frequency
information can be reconstructed. It should be emphasized
that this involves more than simple averaging over time,
which reduces noise and may so produce apparent sharp-
ening, but does not increase the bandwidth of the estimate.
While the Nyquist frequency is determined by the illumi-
nator spacing, the highest frequency obtainable from super-
resolution is determined by the angular extent of the illumi-
nators themselves.

4.2. Shadows and Interreflections
We have assumed that the image intensity produced by

a given patch of surface depend only on the range and ori-
entation of the patch; this is false when the geometry of the
object causes parts of the object to block the illumination
to other parts (cast shadows), or when primary illumination
from the lamps is augmented by secondary reflections from
other parts of the object.

Interreflections between different parts of a concave sur-

face generally cause a surface patch to appear lighter than
might be expected from its surface normal, and naive ap-
plication of a local shape recovery algorithm results in an
underestimate of the depth of the concavity [18]. Vari-
ous methods have been proposed to address this situation
[18, 3], which should in principle be applicable to photo-
metric ranging.

Self-shadowing is in a sense the converse: here the
amount of light reflected is less than predicted by the sur-
face normal, because some of the illumination is blocked by
other portions of the object. Here we outline a scheme to de-
tect this situation. We consider a case in which the number
of illuminators is large, so that the parameter recovery prob-
lem is overdetermined. In this case, the set of image sam-
ples � � from the � th pixel are constrained to lie on a mani-
fold embedded in the full � dimensional space. What is the
dimensionality of this manifold? Under the Lambertian as-
sumption there are four degrees of freedom: one for albedo,
another for range, and two more for surface orientation. If
the patch lies in the shadow cast by the � th lamp, then � ��	
will be smaller than it should be, and in most cases � � will
lie off of the ”valid” manifold. A shadow detector could be
constructed by amassing valid samples from unshadowed
surface patches, and invalid samples from patches for which
one of the illuminators was blocked, and then generating a
classifier which can separate these two groups. If this can be
done reliably, detection of a shadow can trigger the applica-
tion of a special set of coefficients to a reduced data vector
(corresponding to the original data vector less the measure-
ment from the blocked illuminator).

4.3. Target Motion
Our target application of the measurement of face shape

poses special challenges, because of the fact that the face
cannot be expected to remain completely stationary. We
may be able to bootstrap the system by constructing a low-
resolution model assuming no motion, and then refining the
model as motion estimates are added. But when the number
of illuminators is large, the possibility of target motion has
important implications for how the illuminators are sam-
pled. Multiplexed illumination [19] is an approach which,
while offering significant advantages even for stationary tar-
gets, has particular utility when the target may move. In
multiplexed illumination, multiple sources are energized in
a particular temporal sequence, and the contributions of the
individual illuminators are extracted by forming appropriate
linear combinations of the stored images. A major advan-
tage of this technique is that it enables accurate measure-
ment of image components from weak or distant illumina-
tors, even when the image from the isolated illuminator is
below the camera’s threshold. For a moving target, it has
the additional benefit that the measurement is derived from
all the frames in the interval, and this is true for all the illu-
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minators. So while movement introduces temporal blurring
of the parameter estimates, we do not have to worry about
temporal asynchrony of the individual illuminator signals.

Schechner et al. [19] propose the use of Hadamard
codes as the multiplexing signals. We plan to investigate
the use of binary M-sequences [20] in this role as well.
These patterns are often used as a surrogate for Gaussian
white noise in nonlinear system analysis, as in the multifo-
cal electroretinogram [21]. The first order Volterra-Wiener
kernels correspond to the response to the individual illumi-
nators. Because the physical superposition of light is per-
fectly linear, we do not expect to observe nonlinear inter-
actions between the signals when everything is perfectly
calibrated. Conversely, the higher-order kernels provide a
means to calibrate the camera response and interactions be-
tween the illuminator control circuits, although perhaps not
the simplest or most efficient.

For a given surface patch, some illuminators may be
completely irrelevant, while a small subset may be maxi-
mally informative. It may prove useful to adaptively select
the subset of illuminators based on where we are most un-
certain about the surface geometry; this approach was taken
by Lindsy and Blake [4], who used uncertainty to determine
which areas of a structured light image to process in a real-
time system.

4.4. Camera Calibration
Any surface reconstruction method which depends upon

the precise values of image pixels requires that the cam-
era(s) be radiometrically calibrated. Just as display mon-
itors have a nonlinear ”gamma” mapping from input volt-
ages to output luminances, cameras are designed to have a
complementary nonlinearity mapping incident light energy
to output pixel values. We assume that this can be described
accurately by a point nonlinearity, i.e. the value at a given
pixel depends only on the light collected by that pixel, and
is independent of the amount of light collected by other near
or distant pixels. This condition is sometimes referred to as
spatial independence.

A number of methods have been described which solve
for the camera transfer function by collecting a series
of images of the same scene at different exposure levels
[22, 23, 24]. These methods are in principle applicable to
our situation; the ability to control exposure level via the
illuminators allows us to avoid complications arising from
lens vignetting when an iris diaphragm is used to vary ex-
posure.

While the sensor’s transducer function is fixed, and can
be measured as described above, the problem is compli-
cated if the camera electronics include automatic gain con-
trol (AGC). The AGC circuit electronically boosts the signal
when low light levels cause it to fall. For our application,
manual gain control is preferred; it may be possible to use a

camera with automatic gain control, if multiplexed illumi-
nation [19] is used, if all of the frames can be made to have
approximately the same total illumination, so that the gain
is stable.

4.5. Illuminator Calibration
In our simulations above, we assumed isotropic point

light sources of equal radiance. In practice, neither assump-
tion can be taken for granted. There will be some variability
in the radiant output of the individual light-emitting diodes
(LEDs) used in the illuminator. To calibrate the rig, the rel-
ative radiance of each illuminator cell must be determined,
either by direct measurement using a radiometer, or indi-
rectly from a set of images.

Holographic diffusers are available in a variety of angu-
lar patterns, and it is not difficult to achieve good uniformity
over a range of angle sufficient to cover a delimited volume.
But is this always the best thing to do? A narrow fan of
light produced by an anisotropic diffuser could be used to
provide information concerning spatial location, instead of
pure distance information - this can thought of as a blurry
version of the structured light approach in which stripes of
light are projected. In this case, however, calibration will be
crucial.

The brute force approach would be to place a known ob-
ject, such as a ping-pong ball, at a series of known loca-
tions in the measurement volume. We could then calibrate
the measured values, in much the same way as we deter-
mined our reconstruction weights from training data in sec-
tion 2. One might imagine constructing a board with many
balls attached to speed the process. We would like to avoid
methods which require precise positioning of a test object,
however. Perhaps an illuminator rig containing a mixture
of isotropic and anisotropic radiation patterns could ”self-
calibrate” using a simple target such as a matte planar sur-
face. The location of the plane could be determined using
the values associated with the isotropic sources; given the
pose of the planar target, the radiation pattern associated
with an anisotropic source could be inferred from the mea-
surements.

5. Implementation
We are in the process of constructing a versatile illumi-

nation rig with which we will explore the process described
above. It will be installed in an existing imaging worksta-
tion developed for eye gaze tracking. In this setup, a stereo
pair of wide-field cameras image the volume containing the
subject’s head; a third steerable narrow-field camera is also
available. We are using square aluminum tubing to con-
struct the illuminator rig. This tubing is easily machined,
and is available with plastic connectors which allow easy
reconfiguration. Figure 4 shows the ends of two such tubes,
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Figure 4: Components used in our illuminator system. Illu-
mination cells are created in 1 inch aluminum square tubing
by drilling holes to accept LED clips, and milling diffuser
windows on the opposite side. A small circuit board con-
trols up to 64 led circuits. Cubes of foam are inserted inside
the tubing between the cells to block and absorb stray light.

along with the components used to construct the light bar.
Each illumination cell consists of 4 near-infrared LED’s
mounted to the rear surface of the tube; a square window
cut into the front surface allows easy mounting of a piece
of plastic diffusing film. We are using holographic diffusers
(Physical Optics Corporation), which are available in a va-
riety of angles. Small cubes of foam are inserted into the
tube between cells to block and absorb stray light.

Our custom LED driver circuit can also be seen in figure
4. The circuit consists of a programmable microcontroller
(Microchip PIC-16F876) which communicates with the
host computer over an RS232 serial interface. The micro-
controller uses the outputs of the sync separator (LM1881)
to synchronize changes to the illuminator states with verti-
cal blanking. Control of LED circuits is performed by a four
monolithic LED driver chips (Texas Instruments TLC5921).
Each chip controls 16 illuminator cells, giving the board
a total capacity of 64 channels. The current to each cell
is controlled by an on-board potentiometer (one per driver
chip), and can range from 1-80 mA. Communication with
the host computer is via an RS232 serial interface, which is
used both for programming the microcontroller, and send-
ing LED control commands to the firmware in real time.
The circuit incorporates a video sync separator, driven by
the camera signal, so that the LEDs can be synchronized
with the cameras’ electronic shutters. Our current firmware
only changes LED states after the arrival of a sync pulse,
so that each channel is either ON or OFF for the duration

Figure 5: View of our illumination rig from the point of
view of a subject seated at the workstation. As of this writ-
ing, only two light bars have been populated with compo-
nents (first and third from the top in this image). Note that
the diffusers are not installed, with the exception of the sec-
ond cell from the left in the top bar. The different ranges
of the bars can be inferred by the different degrees to which
each bar is lit by the camera flash.

of each frame; we plan to add a feature to the firmware al-
lowing partial-frame exposures, allowing more than 1 bit of
intensity control.

6. Summary and Conclusions
We have presented a local method for direct range es-

timation from a set of images. The method relies upon a
three-dimensional array of compact illumination sources,
and exploits the near-field dependence of irradiance upon
distance. Preliminary results suggest that useful range esti-
mates may be obtained without resort to other cues, while
the incorporation of photometric range estimation into other
shape estimation methods is bound to yield improvements.
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